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Abstract. It is shown that classical actions for some “physically interesting” quantum field theories can be
obtained as effective actions from the single “fundamental” theory of the Chern–Simons form. The physical
degrees of freedom are encoded in the space of cohomologies of a certain differential operator. This obser-
vation suggests a different perspective on some of the supersymmetric properties of these effective theories.
Namely, it is possible to construct a superfield formalism which allows to find off-shell SUSY actions for the
on-shell supersymmetric theories, where conventional superfield formalism does not work. This formalism
contains even auxiliary variables λα in addition to conventional odd variables θα. This idea is similar to the
Pure Spinor construction. This paper is a short review of papers [11, 12]. Original results discussed below
were obtained in collaboration with V. Alexandrov, A. Gorodentsev, A. Losev and V. Lysov.

1 Introduction

The central statement of the paper is that different classi-
cal field theories can be written in the form of action (2)
by the addition of auxiliary fields. The fact that the the-
ory (2) can be written in such a compact form is due to the
introduction of the pure spinor fields A and P (the defin-
ition is given in Sect. 2). The construction of these fields
was suggested in [1–3], [4]. What is claimed in this paper
is that these fields can be considered as superfields and
are needed to restore the off-shell SUSY invariance for the
various on-shell supersymmetric theories. Another result is
that the descent from off-shell supersymmetric action (2)
down to its on-shell version is realized through the conven-
tional procedure of quantum field theory – evaluation of
the Feynman path integral. It happens that the perturba-
tion series for this integral is finite, which means that it can
be summed up explicitly.
As a universal framework for the calculation of “ef-

fective action” (elimination of auxiliary fields), we use the
Batalin–Vilkovisky [6–10] formalism. This formalism al-
lows us to control the descent of a symmetry of the ac-
tion (2) down to its effective action. This technique is ap-
plied to the case of supersymmetry.
Another message of the present paper is that, in con-

trast to N. Berkovits’ construction, the matrices Cµαβ in
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the definition of the pure spinor constraints (see Sect. 2 for
details) are not necessarily Dirac γµαβ-matrices. We con-
sider them as arbitrary constant matrices. This “exten-
sion” allows us to obtain a plethora of different theories
described by the construction.
In this short review we avoid rigorous proofs and tech-

nical details. Its aim is to explain our main ideas, presented
in [11] and [12].

2 A pure spinor superfield formalism

The construction starts from the set of odd Grassmann
variables θα and an equal number of even variables λα

(the index α runs in the range α = 1...k, where k is ar-
bitrary). These variables λα are restricted by the set of
quadratic constraints fµ = λαCµαβλ

β = 0. Here, Cµαβ are
arbitrary constant matrices, symmetric in α, β (allowing
only those combinations of λ that are not proportional to
fµ(λ)). In the end, the variables θα will play the role of
conventional supercoordinates. In a way that is similar to
the “standard” approach, we introduce two superfields A
and P . A is a generic element in the space of θα and λα

with the component fields taking values in a (adjoint) rep-
resentation of a given gauge group. The superfield P takes
value in the space that is dual to that of θα and λα. The
generating elements of this superfield are denoted by λα

and θα. There is canonical pairing between the elements
of the space of A and P denoted by <,>. It is defined as
< ea, eb >= δ

a
b . Here, eb denotes basis elements in the space
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of A and ea denotes basis elements in the space of P . The
number of basis elements eb is equal to the number of in-
dependent component fields in the superfield A. The same
is true for the superfield P . The component fields in A and
P are different. Introduction of the dual superfield is ne-
cessary to achieve the invariance of the construction under
linear transformations of the basis elements ea.
The next ingredient is the operator [1–3, 5]

QB =Q+Φ= λ
α ∂

∂θα
+
1

2
θα
∂fµ

∂λα
∂µ . (1)

Here fµ(λ) is the set of quadrics defined above, and ∂µ is
the derivative with respect to the space-time coordinates.
At this level we suppose that the number of quadrics is
equal to the number of space-time coordinates. In Sect. 4
we will show (as described also in [11]) that one can make
different reductions assuming that, for example, some
derivatives ∂µ act as zero on the component fields.
The central object of our consideration is the action

SFund =

∫
Tr
(
< P , QBA>+g < P ,A

2 >
)
. (2)

In this action, A and P are the superfields defined above
and parameter g is the gauge coupling constant. One can
rewrite SFund in terms of component fields. To find the
contribution of the first term, one should apply the op-
erator QB to the generic superfield A and calculate the
canonical pairing of the result with the superfield P . In the
second term, one should multiply the two A superfields,
expand the result into the basis elements in the space of
A and then evaluate the pairing <,>. The result of this
calculation is some combination of component fields and
space-time derivatives. Each component field is an elem-
ent of a representation of the gauge group and depends
on the space-time coordinates. To find the scalar action,
one should calculate the trace over the gauge group indices
and integrate over the space-time coordinates. These oper-
ations are presented in (2).
After the calculation of the canonical pairing <,> the

action (2) contains many fields. Some of these fields are
physical and some of them are auxiliary. We would like
to emphasize that the number of these fields and the way
they contribute to the action is determined by the number
k of λα and θα and the structure of the matrices Cµαβ in
the definition of the quadrics. The crucial element of this
construction is the assumption that among these fields the
physical degrees of freedom are those which have a λ− θ
structure that is proportional to the cohomologies of the
operatorQ= λα ∂

∂θα .
We would like to emphasize the difference between op-

eratorsQB andQ. The latter represents only the first term
in QB. The physical spectrum of the theory coincides with
the cohomologies of operatorQ.

3 Calculation of effective action

Our strategy is to integrate out all the fields in the ac-
tion (2) that are not cohomologies of the operator Q. The

effective action on cohomologies is a classical Batalin–
Vilkovisky action for a “physically interesting” theory. To
avoid confusion, we would like to stress that the fields
which are integrated out are auxiliary. Hence the terminol-
ogy “effective action” may seem inappropriate for this ob-
ject. However, as we will show below, the calculation of this
“effective action” is the standard procedure in the Batalin–
Vilkovisky formalism. In accordance with this observation,
we retain this somewhat unconventional terminology.

3.1 Batalin–Vilkovisky formalism

In the approach to supersymmetric gauge theories that is
the subject of the present paper, the Batalin–Vilkovisky
formalism plays the role of universal framework for the cal-
culation of effective action [16, 17]. What is important for
us is that the BV formalism is a convenient tool that allows
us to control the descent of the arbitrary symmetry (global
or local) of the “fundamental action” down to the effective
action.
The central object in the formalism is the classical BV

master equation

0 =
δSBV

δχn
δSBV

δχ∗n
(3)

Here SBV is called BV action and depends on the fields, the
ghosts and their BV antifields (χn stands for all the fields of
the theory, χ∗n denotes the corresponding antifields). This
equation has many solutions, but the most important one
for us is called classical BV action

SBV = Scl[A]+ δAnA∗n+
1

2
f cabc

a cbc∗c (4)

Here Scl[A] is classical action, which depends only on the
physical fields An and is invariant under the symmetry
transformations δAn of the second term. The parameter of
these transformations is ca. The fields A∗n and c

∗
a are BV

antifields for An and ca. Parameters f cab are the structure
constants for the algebra of symmetry. In the case of or-
dinary gauge symmetry, δAn is a BRST transformation of
An and ca is a Faddeev–Popov ghost.
It is important to note that if an action satisfies (3) and

can be written in the form of classical BV action (4), this is
equivalent to the following conditions:

– Scl[A] is invariant under the algebra of symmetry of the
second term.
– This algebra of symmetry is closed off-shell and the
structure constants are given by f cab.

The important point is that there exists a procedure
for the calculation of the effective action that preserves the
BV invariance. Namely, if the initial action satisfies the BV
equation, then the effective action (which is obtained by
integrating out some fields) satisfies the BV equation as
well. The procedure involves integrating over a lagrangian
submanifold in the space of fields [16, 17] (for the simple ex-
planation see Sect. 2 of [11]). This fact makes it possible to
analyse the symmetries of the effective action.
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We apply this technique to our calculation, starting
from the action (2). It is possible to show that this action
satisfies the BV equation (3). The BV fields are the com-
ponent fields of A, and the BV antifields are represented
in the superfield P . We are going to decompose the super-
fields A and P into two parts: A=A+a and P = P +p.
A is the superfield that takes values in the space of Q-
cohomologies, and a lies in the orthogonal complement to
the Q-cohomologies. P and p are the elements of spaces
dual to those of A and a. The effective action is defined as

e−S
eff(P,A) =

∫

lagrangian
submanifold

Dp Dae−S
Fund(P,p,A,a) (5)

The fact that SFund satisfies equation (3) is inherited in the
gauge invariance of Seff(P,A).
Up to this point we have discussed the descent of the

gauge invariance from the action (2) to Seff. This descent
is “trivial” in the sense that both actions (2) and Seff are
gauge invariant. In Sect. 5 we analyse the descent of super-
symmetry from the same perspective.

3.2 Feynman diagram technique

In this subsection we explain how the calculation of
Seff(P,A) in (5) is done by summation of all possible con-
nected Feynman diagrams, with external legs being the
cohomologies of the Q-operator. In spite of the presence
of the non-standard variables λ and θ in the definition of
SFund, this calculation is simply the calculation of a Feyn-
man integral in conventional quantum field theory. The
remarkable fact is that its perturbative expansion is fi-
nite and contains only a quite limited number of diagrams.
These diagrams can be summed up explicitly into a rather
simple and local effective action. Thus, the expansion of
the integral (5) is exact.
Our suggestion is to consider the operator < P , QA>

(the first part of QB) as a kinetic term and the rest of
SFund, namely < P , ΦA > and g < P ,A2 >, as perturba-
tion. With the decomposition A = A+a and P = P + p,
where A and P are defined by Q-cohomologies, it be-
comes apparent that the kinetic term reduces to< p,Qa>.
The terms QA and PQ vanish. There are many contribu-
tions into the vertex part of the action. Some of them are
< P,ΦA >, < p,ΦA >, < P,Φa >, < p,Φa >, g< P, a2 >,
..., 12 contributions in total. Some of these vertices are
drawn in Fig. 1 (only two vertices are illustrated here, but
the remainder can be derived in an obvious way).
In this Figure, the solid in-coming line denotes the ex-

ternal field A, the solid out-going line denotes the field P ,
and the wavy lines denote the propagating fields a and p.

Fig. 1. Examples of vertices

Fig. 2. Possible diagrams

We would like to emphasize that the kinetic term
< p,Qa > has a large number of zero modes (for example
δa=Qε). To define the propagator “Q−1” this gauge ambi-
guity should be fixed. This is done in (5) by restricting the
domain of integration to the lagrangian submanifold.
Eventually, one could apply conventional Feynman

technique to draw all possible diagrams. There are two
rules to be followed.
• All quantum loops are absent in the theory (2).
• Even at the tree level, the length of the diagram is limited
by θ structure. Indeed, propagator “Q−1” increases the
power of θ. Since the number of θα is equal to k, the num-
ber of propagators in each branch of the diagram can not
be bigger than k. Usually this limit is even stronger, for
instance, due to the λ structure.
In Fig. 2 we present two possible diagrams as an ex-

ample. The first one contributes to the kinetic term of the
effective action, while the second one contributes to the in-
teraction.

4 The space of effective actions

As already mentioned above, all information about de-
grees of freedom and the structure of effective action is
encoded in the number k of λ and θ and the structure of
quadrics fµ(λ). It happens that there are two large classes
of quadrics, which are called regular and singular sys-
tems. We do not give precise definitions [11] of these sys-
tems here. What is important for us is that for the case in
which the number of quadrics is smaller than the number
k, almost all possible systems are regular. In the bulk of
regular systems there is a small but still infinite number of
singular quadrics.
The point is that in the case of regular quadrics there

is a certain universality in the spectrum ofQ-cohomologies
and hence in the structure of effective action. For an ar-
bitrary regular system of quadrics, the effective theory is
the AKSZ (Alexandrov, Kontsevich, Schwarz, Zaboron-
sky) version of the Chern–Simons theory (BF-theory) [13].
For the system of N quadrics fµ(λ) (index µ runs µ =
1...N) this theory is defined in N dimensions. Therefore,
in the regular case the effective action is not sensitive to
the particular structure of matrices Cµαβ in the definition of
quadrics. Only the numberN is important.
The opposite is true for singular systems. In this case

the structure and degrees of freedom of effective action are
highly sensitive to the structure of Cµαβ . For each system of
quadrics its own effective theory can be obtained. Though
in the regular case effective action is a “trivial” topological
theory, in the case of singular systems the effective action
has a quite non-trivial spectrum and dynamics. Thus, we
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Fig. 3. The space of effective theories. The gray background
represents the bulk of AKSZ theories. We emphasize that this
picture is a schematic illustration only (see the comments below
and footnote 1)

come to the conclusion that “physically interesting” the-
ories are singularities in the bulk of trivial “topological”
theories. This idea is schematically depicted in Fig. 3.
Until now, only a quite small number of singular sys-

tems has been investigated in detail. Some of them are de-
picted in the figure. It would be of great interest to search
for such singular systems with different numbers k of λ and
θ and different numbers N and structures of quadrics.
It should be emphasized that this picture is only

a schematic illustration. For example, the points “2− d
gauge model of [5]” and 10−d super Yang–Mills have dif-
ferent statuses. The action of 2−d gaugemodel is obtained
from the fundamental action (2) exactly as outlined in the
discussions of the previous Section. To obtain the action of
10−d SYM, on the other hand, an additional Z2 projec-
tion must be made onto the space of fields (see Sect. 6). The
same seems to be true for 11−d supergravity1.
We would also like to mention the possibility that there

may be connections between these ideas and recent discus-
sions regarding the Landscape program [14, 15].

5 The descent of supersymmetry

In the previous Sections we explained that by integrat-
ing out the orthogonal complement to Q-cohomologies in
the action (2) one can obtain “physically interesting” ef-
fective action. In the present Section we show that all the
fields that are integrated out are auxiliary. These fields are
needed to restore the off-shell SUSY invariance for the on-
shell supersymmetric effective theory. The central state-
ment is that the action SFund is the off-shell supersymmet-
ric version of Seff for a given system of quadrics. We also

1 To obtain the interaction terms for SUGRA, one should
modify the interaction in the action (2), see [24].

show that for an arbitrary set of quadrics, the action Seff is
at least on-shell supersymmetric.
To prove these statements one uses the general ideol-

ogy of BV formalism, as follows. To study the descent of
supersymmetry from the action (2) to Seff, one introduces
the sources for each generator of the symmetry into the
action. The algebra of SUSY is generated by Qsα and the
translations ∂µ.

Qsα =
∂

∂θα
−Cµαβθ

β∂µ . (6)

The commutation relations are {Qα, Qβ} = −2C
µ
αβ∂µ.

This algebra is closed. We introduce the ghosts for SUSY
εα and the ghosts for translations ηµ. Then one can write
the new action.

Ss = S
Fund+

∫
Tr
(
< P , (εQs+η

µ∂µ)A>−η
∗
µ (εC

µε)
)
(7)

Since we are discussing global symmetries, the ghosts ε and
η do not depend on space-time coordinates. It is straight-
forward to check that the action (7) satisfies the BV equa-
tion (3) over the fieldsA,P , εα, ε∗α, η

µ, η∗µ and has the struc-
ture of the classical BV action. Hence, according to the
discussion in Sect. 3.1, the action SFund is invariant under
the SUSY transformations and the SUSY algebra is closed
off-shell. Then we integrate out the complement to Q-
cohomologies from the action (7) to obtain Seffs . We do not
integrate over parameters εα and ηµ. Since the integration
is done over a lagrangian submanifold, Seffs also satisfies the
classical BV equation. However, this action does not have
the structure of (4). In addition to the standard BV struc-
tures, some “new” terms appear in Seffs . These terms can be
divided into two classes. We tried to determine the physi-
cal meaning of these terms [18–23]. Their definitions and
interpretations are summarized in the Table 1. Taking into
account these facts, we conclude that if Seffs satisfies the BV
equation, then it follows that Seff (which is the first part of
Seffs , independent of ε and η) is on-shell supersymmetric.
The action SFund is its off-shell version.

Table 1. Interpretation of non-standard terms in the master
action

Term Interpretation

(εψ∗)2 The terms are quadratic in antifields. The
appearance of such terms in BV action signals
that the algebra of symmetry is closed
only on-shell.

c∗(εγµε)Aµ Such terms are responsible for the gauge
fixing. For example, they appear in the
BV action when one fixes the Wess–Zumino
gauge in N = 1,D = 4 SYM theory. The
appearance of such terms signals that the
algebra of SUSY is closed only up to some
gauge transformation.
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As a concluding remark, we would like to emphasize
that the introduction of ghosts ε and η is only a techni-
cal trick, which allows us to control the SUSY properties of
SFund and Seff. On the other hand, the fields A and P can
be considered as superfields. All this is true for the theories,
similar to [11], which do not require Z2 projection. For the
Z2 projected theories the situation is a little bit different.

6 The descent of SUSY in Z2 projected
theories

We start this Section with the simplest example of Z2
projected theories – 10-dimensional SYM. This system is
described [1–3] by the set of quadrics fµ(λ) = λαγµαβλ

β ,
where γµαβ are 10 dimensional Dirac γ-matrices (index α
runs in the range α = 1...16, index µ runs over µ= 1...10).
The spectrum of cohomologies is given in the Table 2.
The first column presents all the fields of effective the-

ory, and the second column contains their BV antifields.
From this table one can see that in addition to the fields
(c, Aµ, ψ

α) (which are F–P ghost, gauge field and gluino)
and their antifields (c∗, A∗µ, ψ

∗
α), which are needed for the

BV action of SYM, there are additional fields with the tilde
sign. These additional fields are not simply decoupled from
effective action, but actually contribute to it in a rather
non-trivial way. To obtain the action of SYM, one should
carry out Z2 reduction, by factorizing out the tilde-fields
according to the rule c̃∗ = −c, Ã∗µ = Aµ, ψ̃

∗ = −ψ, ψ̃ =

ψ∗, Ãµ =−A∗µ, c̃= c
∗. After this Z2 reduction, the effect-

ive action calculated for (2) reduces to BV action for SYM.
We would like to emphasize that although the calcu-

lation of effective action before Z2 projection for the the-
ory (2) is a well-defined procedure in quantum field theory,
Z2 projection itself is done “by hand”. We do not yet know
how it can be realized through the Feynman path integral.
A quite similar situation holds for the case of 11-d super-
gravity. It would be interesting to understand how this

Table 2. The spectrum of cohomologies

Polarization A P

1 c c∗

(λγµθ) Aµ A
∗
µ

(λγµθ) (θγµ)α ψα ψ∗α

(λγµθ)(λγνθ)(θγµν)
α

˜ψα ˜ψ∗α

(λγµθ)(λγνθ)(θγµνρθ) ˜Aρ ˜A∗ρ

(λγµθ)(λγνθ)(λγρθ)(θγµνρθ) c̃ c̃∗

Z2 projection can be realized within the framework of BV
formalism (evaluation of path integral). This would shed
light on the structure of off-shell SUSY invariant actions
for these Z2 projected theories (including 10-d SYM, 11-d
SUGRA, etc.).
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